
II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

April, 2017
Fourth Semester
Time: Three Hours
Answer Question No. 1 compulsorily.
Answer ONE question from each unit.

Chemical Engineering Engineering Thermodynamics

Maximum : 60 Marks

$(1 \mathrm{X} 12=12$ Marks $)$

1. Answer the following
(4X12=48 Marks)

a.	Internal energy: Submolecular energy; Inter-atomic and intra atomic energy; Translational, rotational and vibrational energies of molecules, bonding energy, potential energy of electrons and nuecleons;
b.	Intensive property: Quantity independent property; Molar energies like U, H,G and A
c.	Reversible process: Direction can be revered by an infinitismal change in driving force; is frictionless; Never more than differentially removed from equilibrium position; Traverses a succession of equilibrium positions; driven a force whose imbalance is infinitismal in magnitude; When reversed, retraces its forward path, and restores the initial state of system and Surroundings;
d.	Cyclic process: process that periodically retains it's original state.
e.	Entropy: There exists a property called entropy S, which is an intrinsic property of a system, functionally related to the measurable coordinates which characterize the system. For a reversible process dQ = TdS
f.	Third law of thermodynamics: Absolute entropy of a pure crystalline substance at 0 K is zero.
g.	Adiabatic mixing process: Mixing without heat exchange with surroundings;
h.	Clausius inequality: dQ = TdS for reversible change; and dQ < TdS for an irreversible change;
i.	Throttling process: $\mathrm{dH}=0 ;$ it is sudden expansion through a porous plug or valve or so on....
j.	Equation of state: $\mathrm{f}(\mathrm{p}, \mathrm{v}, \mathrm{T})=0 ;$
k.	Gibbs free energy: $\mathrm{G}=\mathrm{H}-\mathrm{TS}$
l.	Liquefaction : Changing the state of substance to liquid.

UNIT I

| 2 | | Discuss in brief heat and work: Heat is a form of energy under transit due to temperature
 difference; Work is defined as product of distance and force in the direction of motion; As both
 are different forms of energy only they enjoy same units of Joules in SI system and they are inter
 convertible. According Joule's experiment work could be converted completely in to heat and heat
 energy is stored in substance in the form of internal energy; 1 Cal of heat $=4.187$ J is known as
 mechanical equivalence of heat; But according to second law of TD heat cannot be completely
 converted in to work continuously. 2x3 = 6 M |
| :--- | :--- | :--- | :--- | :--- |
| a. | | |

UNIT II

\square Air is compressed from an initial condition of 1 bar and $25^{\circ} \mathrm{C}$ to a final state of 5 bar and $25^{\circ} \mathrm{C}$ by

6M two different mechanically reversible processes in a closed system.

$\frac{P_{2}}{P_{1}}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} \mathbf{6 ~ M}$

UNIT IV

		 The constant-pressure process (1) approaches the two-phase region (and liquefaction) most closely for a given drop in temperature. The throttling process (3) does not result in liquefaction unless the initial state is at a high enough pressure and low enough temperature for the constantenthalpy process to cut into the two-phase region. This does not occur when the initial state is at A. If the initial state is at A^{\prime}, where the temperature is the same but the pressure is higher than at A, then isenthalpic expansion by process (3^{\prime}) does result in the formation of liquid. The change of state from A to \mathbf{A}^{\prime} is most easily accomplished by compression of the gas to the final pressure at B , followed by constant-pressure cooling to A^{\prime}. Liquefaction by isentropic expansion along process (2) may be accomplished from lower pressures (for given temperature) than by throttling. The throttling process (3) is the one commonly employed in small-scale commercial liquefaction plants. The temperature of the gas must of course decrease during expansion. This is indeed what happens with most gases at usual conditions of temperature and pressure. The exceptions are hydrogen and helium, which increase in temperature upon throttling unless the initial temperature is below about 100 K for hydrogen and 20 K for helium. Liquefaction of these gases by throttling requires initial reduction of the temperature to lower values by method 1 or 2 . for air shows that at a pressure of 100 atm the temperature must be less than 169 K for any liquefaction to occur along a path of constant enthalpy. $\mathbf{3 \times 2 = 6} \mathbf{M}$		
		(OR)		
9	a	Write a short notes on heat pump The heat pump, a reversed heat engine, is a device for heating houses and commercial buildings during the winter and cooling them during the summer. In the winter it operates so as to absorb heat from the surroundings and reject heat into the building. Refrigerant evaporates in coils placed underground or in the outside air; vapor compression is followed by condensation, heat being transferred to air or water, which is used to heat the building. Compression must be to a pressure such that the condensation temperature of the refrigerant is higher than the required temperature level of the building. The operating cost of the installation is the cost of electric power to run the compressor. If the unit has a coefficient of performance, $\mathrm{Q}_{\mathrm{C}} / \mathrm{W}=4$, the heat available to heat the house I QH I is equal to five times the energy input to the compressor. Any economic advantage of the heat pump as a heating device depends on the cost of electricity in comparison with the cost of fuels such as oil and natural gas. The heat pump also serves for air conditioning during the summer. The flow of refrigerant is simply reversed, and heat is absorbed from the building and rejected through underground coils or to the outside air. Fig $2 \mathbf{M}+\mathbf{C O P}=\mathbf{2 M}$; Description $=\mathbf{2} \mathbf{M}$	5M	
	b	A refrigerator requires 1 kw of power per ton of refrigeration. What is the coefficient of performance and how much of heat is rejected in the condenser. $\text { Ton of refrigeration }=3.51 \mathrm{~kW} ; \mathrm{COP}=3.51 / 1=3.51 ; \text { Heat rejected }=4.51 \mathrm{~kW}(2 \mathbf{~ M}+2 \mathbf{~ M}+\mathbf{3} \mathbf{~ M})$	7M	

Dr.N.Rama Gopal
9963106450

